DNV·GL

Industrial Internet:

The next age of productivity for European gas turbine based plants

Pascal Decoussemaeker, GE Power

Chris Dagnall, DNVGL

10 October 2018

Introduction – ETN perspective

- Improvements in plant performance
 - Hardware based many improvements in recent years, reaching area of diminishing returns
- New focus using digital technologies
 - Accelerate productivity
 - Reduce inefficiency and waste
 - Enhance human work experience
- ETN 2016 project board R&D report highlighted ICT (information and communication technology) as an enabler to achieve targets for GT industry.
 - Predictive performance algorithms
 - Risk based maintenance
 - Grey box models
 - New instrumentation
 - Big data storage and management

Introduction

- 2014 industrial internet consortium (IIC) formed
 - To enable accelerative growth of industrial internet of things (IIoT)
- EPRI project I4Gen, insight through integration of information for intelligent generation (2016)
- Other industries benefiting from digital transformation
- This paper will review
 - Opportunities IIoT provide
 - Associated risks
 - Benefits to GT plant in the Oil and Gas and Power Generation industries
 - Understanding the value creation process
 - How business can take advantage of digital transformation

Acknowledgements

First Industrial Revolution

Industrial production driven by water and steam

Second Industrial Revolution

Assembly Lines and integration of electricity Third Industrial Revolution

Automation by electronics and IT

Industry 4.0

Connectivity – Advanced Analytics – Networking

Industrial Internet of Things (IIoT)

- The connection of all hardware and software within an industrial environment
- Mixing of industry with open computing and communications as part of the Internet Revolution
- Brings machinery and smart data together
- Allows for real time adjustments and insights for smarter business decisions.
- Advanced sensors, better control
- Analytics, machine learning
- Improvements in operation efficiency

Historic Roadblocks

- When asked ETN members agreed industry is between information and knowledge
- EPRI survey came to similar conclusion

Brain storming sessions

- ETN work groups conducted brain storming sessions with its members
- Held at ETN meetings
 - Prague 2016
 - Oberhausen 2017
- Covering
 - Data access and connectivity
 - System/platform management
 - Data management
 - Data security
 - Analysis and analytics

Brain storming session

Data access and connectivity	System/platform management	Data management	Data security	Analysis and analytics
 Data islands Time continuity Incomplete data model Data resolution Data browsing limitations Physical limitations Data ownership 	 Hardware or software update issues Obsolescence Hardware limitations Different data formats 	 Incomplete data Data validation 	 Access limitations Risk associated with 3rd part access 	 Modelling limitations Effort and cost involved with maintaining models Expertise Risk management Economic evaluation Human factors Uncertaincies related to cost- benefit

- Onset of IIoT helps to address may historical challenges
- Reviewed during ETN meeting Genoa, Italy, October 2017

What's New

Data access and connectivity

- Cloud database
- Single source access point
- Integrate data islands
- Difference access and connection technologies can be used
- Access through mobile and remote devices

System/platform management and maintenance

- Software as a service (SaaS), shift in responsibility
- Improved reliability, disaster recovery, maintenance
- Handling of different data types
- Data from different sources
- Scalability
- Technology advancements not industry specific
- Open platform
- Reduced costs
- Cost of devices

Data management and maintenance

- Improved data quality – easier maintenance
- Short term storage
- Improved HMI

Data security

- Remote data reduces risk of direct access
- Secure data storage
- Data encryption
- Data diode
- Viewing data "on device" more secure than hardcopy
- Central version control
- Still a risk of single location

Analytics an analysis

- Advanced analytics software more available
- Code sharing standards
- Virtual plants or digital twin
- Increased visualization opportunities
- Management of data access
- Breakdowns operational silos
- Virtual power plants
- Faster fault analysis as access to data better

Sensors

- Improved sensors
- Faster processing technologies
- Lower cost of technologies
- Wireless technology

- Cyber Security
 - Hackers
 - More security but only access to data not plant
 - Convergence of OT (operational technology) and IT systems, could make a plant more vulnerable to acts of sabotage
 - Competitor insight, can happen already with printed documents and email, can be managed better
- Skills
 - IT skills, reduced through SaaS
 - OT skills, plant reliability requires OT qualified people, required for operation and maintenance of systems, remote support can help here
 - Training on new systems and technology

Pitfalls and risks

- Abundant data solves nothing
 - Leadership and process are part of the implementation.
 - Project teams need to ensure their expertise is used
 - Connecting the right data sources
- Ownership
 - Data access to historic data
 - Licence agreements need to be in place
 - In IIoT software is a service and owned by the service provider, subscriptions need to be in place.

How can the industrial internet provide value?

Accelerate productivity	 Closer to equipment limits Better forecasting Trade offs between market and life consumption 	
Reduce inefficiency	 Off design tuning for part load Predict and avoid failures Reduce life cycle costs Fleet benchmarking Better alignment across organisation 	A al mar
Enhance the human work experience	 Mobile worker, ease of access, better reporting Robotic inspection technologies Virtualization/minimize risk 	

Maturity model

- Industry 4.0 The smart factory, relies on Cyberphysical systems which link the physical and virtual worlds.
- The smart factory manages itself using data
- Requires real-time data and cross enterprise collaboration.
- Most companies will not start from zero
- It is important to understand your starting point
- Digital mastery requires not only technology but also governance to manage the transformation

Assessing your maturity level, two main dimensions

- leadership and organizational aspects (Westerman et al, 2014).
 - Management:
 - Is there a clear vision, plan and KPI's linked to the expected business outcomes.
 - Organization and implementation of digital capabilities:

How is the adoption? How is the relationship with the IT department? How is training for users organized?

Self Assessment

- List of questions develoed to perform selfassessment (Decoussemaeker / Dagnall 2018)
 - 1 strongly disagree / not at all;
 - 3: neutral / partly;
 - 5: strongly agree / fully in place.
- Results can then be average in each category.
- The results of the different categories can be averaged according to the two main dimensions and plotted on a XY graph (Westerman et al, 2014).

Implementation Model

- New technologies and methods need to be merged with existing technologies and processes.
- A successful implementation needs a business to consider both technology and leadership/organisation development
- A two speed approach is recommended
 - Build a digital backbone with interfaces to existing systems, old IT processes need to continue to receive full support.
 - Once backbone in place new capabilities can be developed in a fast and agile manner. Continuous deployment ensures rapid feedback of users and business

Implementation – Four phases

Case Study

- Old CCGT plant challenged with providing economic and reliable power as demand and fuel prices fluctuated.
- Management understood data from their plants could help informed decisions.
- Sensor data was collected and analytics applied to create insight for informed decisions
- M&D centre created to drive KPI for reliability, thermal performance and operational flexibility.
- Plant achieved the top quartile for heat rate and reduced fuel costs during startup
- Reliability improved by 1%
- Pilot system successful and roll out being planned for the future

Thank you for your attention

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.

21 DNV GL ©

